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CHAPTER I. INTRODUCTION 

The upper atmosphere (the atmosphere above the troposphere) has 

long been a data-void and therefore, mysterious region. Contrary to 

the lower atmosphere (the troposphere), where easily available data 

contributed to the development of the equations, theories and models 

that form the basis for modern weather forecasting, knowledge of the 

properties of the upper atmosphere were based, until recently, on 

widely scattered wind and temperature measurements derived from meteor 

trails and from balloons penetrating the stratosphere. Now, measurements 

taken regularly by rockets carrying meteorological instruments have 

begun to supply the data which will help solve the mysteries of the 

upper atmosphere. 

From these measurements, in a span of time little more than one 

decade, scientists have compiled a comprehensive climatology of the 

stratosphere and mesosphere. Individual soundings, however, sometimes 

showed large deviations from expected values. Researchers have sought 

to explain these deviations as products of interactions between regions 

of the atmosphere, particularly as consequences of the transfers of 

energy between the lower atmosphere (the troposphere) and the upper 

atmosphere. This thesis examines one such possible interaction 

between the lower and upper atmospheres; namely, the effect of trop- 

ospheric convection in the form of thunderstorms on temperatures 

observed at mesospheric heights. 

From August 15 through September 10, 1976, the National Aeronautics 

and Space Administration (NASA) launched one or two meteorological 

rockets each day from Wallops Island, Va. The rockets reached 

altitudes ranging from 70-90 kilometers and instruments released from 



these rockets measured vertical profiles of temperature, wind, density 

and pressure. Examination of the temperature profiles revealed that 

on three of the days, August 28, September 2 and September 10, a 
-. 

portion of the mesosphere (about 60-70 kilometers) exhibited tempera- 

tures lo-15 degrees K warmer than on preceding or following days. 

(See Figure 1 for plots of temperature versus height for two of the 

days, August 28 and September 2). Synoptic records for the three days 

indicate that only on these three days in the period from August 15 

through September 10, intense convective activity in the form of 

thunderstorms and showers occurred at Wallops Island. The storms 

began 4-12 hours before the rocket was launched. Clearly, these 

occurrences make it tempting and also reasonable to try to link the 

thunderstorm activity with the mesospheric heating in some way. 

In this study, atmospheric internal gravity waves are proposed as 

the coupling mechanism. Gravity waves arise when a parcel is displaced 

in a statically stable atmosphere (one in which the environmental 

lapse rate is less than the adiabatic lapse rate). The restoring 

force produces an oscillation of the parcel with a characteristic 

frequency called the Brunt-V&&z frequency. The oscillation produces 

a broad spectrum of waves called gravity waves. Among other wave- 

like phenomena in the atmosphere, they fit between the high-frequency, 

shortwavelength acoustic waves and the low-frequency, long-wave- 

length planetary and Kossby waves. Only gravity waves with frequencies 

less than the Brunt-V&s&x frequency are internal gravity waves, i.e., 

propagate energy vertically and only these will be considered. 

The excitation of gravity waves by updrafts penetrating a stable 

layer (common in thunderstorms), called penetrative convection, has 
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Figure 1. Temperature as a function of height at Wallops Island, Va. 
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been studied by many researchers (Townsend, 1965, 1966, 1968; Stull, 

1976). Pierce and Coroniti (1966) considered thunderstorms specifi- 

cally as a means of generating gravity waves. Therefore, the fact 

that thunderstorms can be considered a source for vertically propa- 

gating gravity waves is one reason for choosing them as a means of 

coupling the upper and lower atmospheres. 

Another reason is that gravity waves have been observed at upper 

atmospheric heights. Many researchers (Hines, 1960, 1963, 1965; 

Gossard, 1962; Midgely and Liemohn, 1966; Hooke, 1968; Harris et al., 

1969, to name only a few) have documented and developed theories 

accounting for their presence. Also, the temperature profiles for the 

days on which the heating occurred show a superimposed wave-like 

structure with vertical wavelengths ranging from 5 to 10 kilometers 

which is evidence of vertically propagating wave phenomena the size 

of gravity waves. 

A third reason for suspecting that interval gravity waves excited 

by thunderstorms would have an effect on the mesosphere derives from 

the exponential decrease of atmospheric density p with height and the 

principle of the conservation of energy. In order for the wave's 

kinetic energy per unit volume, pu (2 , to remain constant as p decreases 

exponentially, the perturbation velocity associated with the wave, u', 

must increase exponentially. Therefore, waves originally generated 

in the troposphere will have grown considerably by the time they 

reach mesospheric heights and they will have sufficient magnitude to 

affect motions in the upper atmosphere. 

As the gravity waves propagate upwards through the atmosphere, 

kinetic energy will be associated with the velocity perturbations 
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produced by them. The dissipation of this energy can heat the atmo- 

sphere. It is this heating that will be calculated and compared to 

the observed heating in Figure 1. 

Thus, the purpose of this thesis is to account for the observed 

mesospheric heating through the mechanism of vertically propagating 

gravity waves generated by convective activity. 

In Chapter II, the tropospheric sounding for one of the days 

of the observed heating, August 28, 1976, is analyzed to estimate the 

vertical velocity of a thunderstorm updraft on that day. The data 

for August 28 is used throughout this thesis to explain the procedures. 

The same procedures are used on the data of September 2, 1976, and only 

the results are reported. The data of September 10, 1976, was dis- 

carded since this was the last day of data collection by NASA and it 

is not known for certain that the temperatures returned to normal the 

next day. 

In Chapter III, some basic theory concerning gravity wave propa- 

gation is reviewed, including ray-tracing. Ray-tracing theory assumes 

waves travel in packets or groups that can be identified by a dominant 

wavenumber and frequency. These wave groups travel at local group 

velocities along paths called rays. Whether the raypath of a certain 

wave group reaches the mesosphere depends on its dominant wavenumber 

and frequency as well as the temperature and wind structure of the 

atmosphere. These factors determine if a wave group's energy is 

reflected, absorbed or allowed to propagate. An estimate of the 

spectrum of gravity waves that reach the level of heating is found by 

applying ray-tracing to many combinations of frequencies and wave- 

numbers. 

5 



In Chapter IV, the results of Chapters II and III along with 

some ideas of Stull (1976) are used to calculate a lower boundary 

condition for the model developed in Chapter V. This model uses 

equations developed by Bretherton (1966) which are solved by a method 

described by Chapman and Lindzen (1970). 

In Chapter VI, the heating rates are calculated and presented and 

finally, Chapter VI1 presents conclusions and recommendations for 

future work. 
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CHAPTER II. AN ANALYSIS OF THE SOUNDING OF AUGUST 28, 1976 

A study of internal gravity waves excited by intense tropospheric 

convection should begin with a study of the thunderstorms themselves. 

On August 28, 1976, showers and thunderstorms passed through Wallops 

Island, Va. The first precipitation was recorded at 0700 GMT (3 AM 

local time) but the thunderstorm was strongest from 1100 to 1300 GMT 

(7 to 9 AM local time) during which 1.1 inches of rain fell. No more 

thunder was heard after 1300 GMT (9 AM local time) although the pre- 

cipitation continued to be heavy at times and three quarters of an 

inch of rain fell from then until the showers tapered off around 1700 

GMT (1 PM local time). The thunderstorm that was reported at Wallops 

Island, Va. was part of a group of thunderstorms and shower activity 

kicked off by a short wave trough aloft passing through the area. They 

formed primarily over the Delmarva penninsula. 

Figure 2 is a vertical plot of the temperature and dewpoint of the 

air above Wallops Island at 1200 GMT (8 AM local time) on August 28, 

1976. The temperatures have been plotted on a skew T-log p diagram. 

The sounding is seen to be quite unstable with a deep layer of moist 

air. This sounding will be used to determine an estimate of an air 

parcel's vertical velocity as it penetrates a stable region and the 

length of time it spends in the stable region before its energy is 

exhausted. 

The level at which moist air becomes saturated by adiabatic ascent, 

the lifting condensation level (LCL), is found to be 900 millibars on 

this sounding. Above this level, as the saturated parcel travels up 

through the atmosphere, it will follow the saturated adiabat (process 

curve in Figure 2) on the serological diagram. The saturated adiabat 
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shows how the parcel's temperature changes as it ascends. A saturated 

parcel's temperature will not decrease as fast as the temperature of an 

unsaturated parcel since the process of condensing water vapor into 

a liquid releases heat. The saturated adiabats are constructed on 

the chart with the assumption that all the condensed water vapor falls 

out of the system as soon as it is produced. Also assumed in this 

analysis of the sounding are the restrictions of the parcel method which 

is a method for testing the instability of a parcel of air. The 

assumptions of the parcel method are: 

1. the parcel's movements do not disturb the environment, 

2. the parcel only moves adiabatically, 

3. the pressure of the parcel equals the pressure of the 

environment at every level and 

4. the parcel does not mix with the environment. 

The last assumption is easily recognized as a poor one since only 

one look at the sides and top of a growing cumulus cloud provides 

evidence of turbulent mixing. This mixing brings outside air into the 

parcel in a process known as entrainment. In an attempt to reduce this 

source of error, the graphical correction technique for entrainment 

described by Iribarne and Godson (1973) is used. The rate of entrain- 

ment is difficult to determine. It depends on the size of the cloud, 

its stage of development and the velocities of its ascending air 

currents. In this case, it is assumed that at each step in the graphi- 

cal technique, the parcel is diluted by ten percent through mixing 

with external air. 

The sample air parcel begins its journey at the LCL. Above this 

level, the parcel is warmer than the environment, work is done on the 
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parcel by buoyancy forces and it accelerates. Eventually, it reaches 

a level at which its temperature equals the temperature of the envi- 

ronment called the equilibrium level (EL). In this case, the EL is 

9.5 kilometers (285 mb). 

On a skew T-log p diagram, the area between two curves defining 

the state of the environment and the parcel and the initial and final 

pressure levels is proportional to the amount of work done on or by 

the parcel. In this case, between the LCL and the EL, the parcel is 

warmer than the environment and rises, so the environment is doing 

work on the parcel. The area on this diagram is a function of the 

pressure at the EL (285 mb) and the LCL (900 mb) and the mean tempera- 

ture throughout the layer for the parcel (266'K) and the environment 

(2650~). The proportionality constant relating the area and the work 

per unit mass done on the parcel is the universal gas constant 

R (287 Jkg-l-K-'>. The work per unit mass is calculated to be 330 

-1 Jkg . It is assumed that all the energy gained by the parcel is 

transformed into kinetic energy and futhermore, that all the kinetic 

energy is associated with the parcel's vertical velocity at the EL. 

With these assumptions, a vertical velocity of 25.7 ms -1 is calculated 

for that parcel. 

Above the equilibrium level, the parcel becomes cooler than the 

environment, the buoyancy forces become negative and the parcel 

decelerates. To calculate the height to which the parcel penetrates 

before it exhausts its energy supply, use is made of an equation 

relating acceleration to the buoyancy of the parcel. 

dw dTp - Te> 
-= 
dt Te 

10 
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w is the vertical velocity, g is the acceleration due to gravity, T 
P 

is the temperature of the parcel and Te is the temperature of the 

environment. By making use of the fact that dw/dt is equivalent to 

wdw/dz and integrating both sides, an expression for w as a function 

of height z is obtained. 

w2 (z> -w2(EL)= 
2 g 

Tp-Tedz 

Te 
(2.2) 

Using the sounding and successive applications of Simpson's Rule, 

a profile of w with height is calculated and it is discovered that 

this parcel stops rising (w becomes zero) at 12.5 km. With this w 

profile it is possible to integrate the expression dt = dz/w(z) by 

again using Simpson's Rule. The time the parcel is above the equilib- 

rium level is calculated in this manner to be six minutes. 

Both the parcel's vertical velocity and the length of time it 

spends above the equilibrium level will be used later to compute the 

size of the impulse provided by the convection that excites vertically 

propagating internal gravity waves that in turn heat the mesosphere. 

First, it is necessary to derive some basic relations used to describe 

the propagation of internal gravity waves. 
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CHARTER III. GRAVITY WAVES AND RAY-TRACING THEORY 

In this chapter, simple equations describing some characteristics 

of internal gravity waves are derived. They are then used to'deter- 

mine the paths followed by vertically propagating wave groups. This 

allows the spectrum of gravity waves that reach the level of heating 

to be determined. 

A dispersion equation relating the frequency of a wave to its 

wavenumber can be derived for internal gravity waves. However, some 

simplifying assumptions must be made. To begin with, the atmosphere 

will be considered incompressible. An incompressible atmosphere filters 

out the high-frequency acoustic wave solutions from the wave equation 

and leaves the lower frequency gravity wave solutions. Although an 

incompressible medium may seem unrealistic, equations with this 

simplification have been found to adequately describe gravity wave 

motions observed in the real atmosphere (Gossard and Hooke, 1975). 

This atmosphere will also be isothermal, isentropic, hydrostatic 

and non-rotating. Because of the last condition, the Coriolis force, 

an apparent force appearing in the equations of motion because of the 

earth's rotation, may be ignored. The Coriolis force is a weak 

deflecting force that is effective only over a long period of time. 

Only periods on the order of less than one hour will be considered here 

so it is reasonable to neglect this force. With these simplifications 

and assuming two-dimensional propagation in the x-z plane, the set of 

equations is: 

du 
dt= 

13 
- P ax (3.1) 
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dw 122 -=-g-- dt P aZ 

dp 0 -= 
dt 

(3.2) 

(3.3) 

$+$o . (3.4) 

For an explanation of all symbols, see the List of Symbols on page vii.0 

Equation (3.1) is the equation for the horizontal component of 

motion and Equation (3.2) is the vertical equation of motion. 

Equation (3.3) is an equation representing the incompressibility of 

the fluid and Equation (3.4) is the incompressible continuity equation. 

Equations (3.1) through (3.4) are now linearized by employing the 

well-known perturbation method. Using this method, the dependent 

variables are expressed as the sum of a mean component and a small 

perturbation from that mean. In this case: 

p = P(z) + P’ (x,z, t> 

P = P(z) + P'(x,z,t> 

u = u + u'(x,z,t) 

w = w + w'(x,z,t) . 

The bar denotes a mean quantity and the prime a perturbation. < is 

assumed to be zero and u, p and p are assumed constani with time t and 

horizontal distance x. < is also constant with height z but 7 and p 

are allowed to change with height as in an isothermal atmosphere. An 
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important assumption of the perturbation method is that the product 

of two perturbation quantities is assumed to be negligible and may 

be dropped from the equation. Applying the perturbation method to 

Equations (3.1) - (3.4) and letting i = U, a new set of linear equa- 

tions in the perturbation variables is obtained. 

- ad 
P[a,+ u ax 

au’] =A& 

- awl 
prF+u ax 

w]=-gpI+ 

-+u~+w’~=O w 
at 

ad awl -+==o ax 

By dividing Equation (3.7) by p and multiplying by g, the third 

term becomes 

. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

N2 is the symbol for the square of the Brunt-V~i&il~ frequency. In 

an incompressible atmosphere, N2 = - (g/Y3 a&z. As stated in the 

introduction, the Brunt-VaisSz frequency is the frequency at which a 

parcel will oscillate if displaced adiabatically an infinitesimal 

distance AZ. Thus Equation (3.7) becomes 

14 



(3.10) 

Since the motions to be investigated are wave-like, the perturba- 

tion variables will be expressed in the forms 

U ' = Uexp[i(wt - kx - mz)] 

W ' = Wexp[i(wt - kx - mz)] 

ill = Rexp[i(wt - kx - mz>l 
F 

(3.11) 

(3.12) 

(3.13) 

pl = Pexp[i(wt - kx - mz)] 
v 

(3.14) 

where only the real parts of the right sides are of interest. k is 

the wavenumber in the x direction and m is the wavenumber in the z 

direction. This form assumes sinusoidal variations in time and in the 

horizontal and vertical directions. Substituting (3.11) - (3.14) into 

equations (3.5), (3.6), (3.10) and (3.8) and noting that the term 

exp[i(wt - kx - mz)] will be common to all terms and drop out, the 

following are obtained: 

(w- - .” kU)U - kP = 0 (3.15) 

i(w - kU)W + gR - imp = 0 (3.16) 
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SW w. 

i(w - kU)gR - N2W = 0 

kU + mW = 0 . 

In matrix form, these equations look like this: 

w-kU 

0 

k 

0 

0 

iGL)-kTJ) 

m 

-N2 

-k 

-im 

0 

0 

J 
W 

II P 

R 

= 0 . 

(3.17) 

(3.18) 

(3.19) 

A trivial solution to this set of equations would be U = W = P = R = 0. 

For a non-trivial solution to exist, the determinant formed by the 

coefficients must equal zero. When the equation formed by calculating 

the determinant and setting it equal to zero is solved for the 

frequency w, the result is the dispersion relation: 

W =kU+N . (3.20) 

When two or more waves with slightly differing frequencies and 

wavenumbers propagate at the same time through a medium, they interact 

to form an interference pattern in their amplitudes. These patterns 

are referred to as wave groups or modulation envelopes. The wave groups 

propagate at the group velocity, a speed different from the speed of 

an individual wave. The group velocity can be thought of as the speed 
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at which energy is transmitted by the waves. It is equal to the 

frequency differentiated with respect to the wavenumber. In this case, 

using Equation (3.20), the group velocity in the x direction is: 

In the z direction, the group velocity is: 

(3.21) 

(3.22) 

Bretherton (1966) has shown how equations (3.20), (3.21) and 

(3.22) can be used to calculate the path that a certain wave group 

with a dominant frequency and wavenumber will follow as it moves 

through an atmosphere in which both U and N change with height. For 

these raypaths to be valid, the waves and the atmosphere must obey 

the WKB approximation. That is, the vertical wavelength should be 

small compared to the height over which the horizontal wind U and the 

Brunt-Vzisgl'a frequency N change significantly. In this atmosphere, 

73 
and wg will change with height also. 

Bretherton produces the important result that following a wave 

group at its local group velocity, the dominant frequency and horizontal 

wavenumber by which the wave group is identified will remain constant. 

By calculating the vertical wavenumber m from Equation (3.20) at even 

intervals (every kilometer in this case) using local values of U and 

N and a constant W and k, it is possible to determine the vertical 

17 



profile of m. Equations (3.21) and (3.22) can then be solved for the 

group velocities at each level using local values of m, U and N. The 

time it takes the wave group to reach each new level is computed from 

the local group velocity and the distance between levels (1 kilometer). 

The distance downwind that the wave group travels can be computed using 

the local horizontal group velocity. In this way, the information 

needed to plot the paths the wave groups travel, their raypaths, is 

obtained. The raypaths are calculated up to 85 km. Figure 3 shows 

the raypaths of several wave groups. 

All the waves propagating upwards through the atmosphere do not 

necessarily reach its uppermost regions. Many are affected by re- 

flection and critical levels. 

If the Doppler-shifted frequency, W - kU, equals,the local value 

of the Brunt-Vzis&z frequency N, the raypath becomes vertical and 

the group is reflected down towards the ground. An example of this is 

shown in Figure 3. 

A wave group's critical level is the level at which its Doppler- 

shifted frequency is equal to zero. In the vicinity of a critical level, 

the vertical group velocity becomes proportional to the square of the 

distance from it and the wave takes an infinite time-to reach it 

(Bretherton, 1966). Thus, the energy of the wave can't be transmitted 

through this level and is absorbed there. 

Critical levels and reflection are important to consider since 

their existence or non-existence determines which gravity waves can 

reach the mesosphere. This means that the background wind measurements 

are extremely important since they play a role in calculating the 

Doppler-shifted frequency. Whether a critical level exists or not 

18 
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Figure 3. Raypaths of gravity wave groups initiated at 15 km 
on August 28, 1976. 
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can depend on a difference in the wind speed of only a few meters 

per second. Therefore, absolute statements cannot be made about the 

spectrum of gravity waves reaching a certain level unless one is 

certain of the accuracy of his wind measurements. However, general 

conclusions may be reached about the size of the spectrum if the paths 

of many waves with different frequencies and wavenumbe.rs are studied. 

This has been done and Figure 4 is a plot of the fate of gravity waves 

of different frequencies and wavenumbers (plotted as periods and 

horizontal wavelengths) in the atmosphere of August 28, 1976. This 

plot will be used in the next chapter to determine the range of 

frequencies and wavenumbers that can penetrate this atmosphere to the 

level of heating. 
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Figure 4. Fate of gravity wave groups identified by dominant wavelength 

and periods in atmosphere of August 28, 1976. 
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CHAPTER IV. CALClJT.,ATION OF THE CONVECTIVE ENERGY INPUT 

In Chapter II, it was shown that a parcel rising in unstable air 

reaches an equilibrium level and then penetrates a distance into a 

stable layer, before sinking back down. This type of behavior has been 

studied in the context of thermals overshooting the atmospheric 

boundary layer into an overlying temperature inversion and has been 

labeled penetrative convection. Stull (1976) has studied this type of 

penetrative convection and many of his ideas can be applied to describe 

the penetrating elements found in a thunderstorm. 

Stull has developed a useful representation of an idealized 

convective element. See Figure 5. A parcel penetrates a distance d 

into a stable region and then sinks back to the equilibrium level. 

Figure 5a represents the parcel's height above the equiiibrium level 

as a sinusoidal function of time. P/2 is the time the parcel is above 

the equilibrium level, calculated in Chapter II to be six minutes. 

Figure 5b is the idealized element at the time of maximum penetration 

as a function of distance x. The figure shows that some of the stable 

air is drawn down below the equilibrium level to conserve mass. D is 

the diameter of the element at the equilibrium level. 

In the real atmosphere, thunderstorm updrafts acting as penetra- 

tive elements excite internal gravity waves with a broad range of 

frequencies and wavenumbers. The irregularities of the individual 

elements make the precise determination of the frequencies and wave- 

numbers difficult. Stull solves this problem by making a harmonic 

analysis of his idealized disturbance. He comes up with a smooth, almost 

Gaussian frequency spectrum and an equally simple shape for the wave- 

number spectrum. Both are shown in Figure 6. 
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(a) 

EL 

Figure 5. Idealized penetrative element (a) as a function of time 
and (b) as a function of distance. 
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Figure 6. Spectral energy density J as a function of (a) frequency 

and (b) wavenumber. 
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Note from the frequency spectrum that the bulk of the energy is 

associated with low-frequency or longer period waves. From the wave- 

I 

number spectrum it is not as easy to see with which wavenumbers most 

of the energy is associated but there is a wavelength at which the 

energy density is a maximum and that may be calculated. 

Stull combines the equations describing the shapes in Figure 6 

to obtain an expression for the spectral energy density J of one 

idealized convective element. 

I 

J 53 1 .% 2 ka2 
= 

21/2T3/2fK 2 e- 
- 

7 7 
+ 

2 9 

H "H 
\ > 

(4.1) 

where f 3 ~IT/P and KD E n/D. wi is the Doppler-shifted frequency and 

33 is the horizontal wavenumber (kH2 = k2 + R2 where k(R) is the wave- 

number in the x(y) direction). J is normalized so that 

2lT 00 m 

I I I Jduid$d" = 1 . (4.2) 

@=O %=O wi=o 

.- 

C$ is the horizontal angle in wavenumber space. 

If the normalized energy density function (Equation (4.2)) is 

integrated over a range of wavenumbers and frequencies corresponding 

to the wavelengths and periods of the range of waves calculated to 

reach the level of heating by ray-tracing theory, the result will be a 

rough estimate of the fraction of the total kinetic energy of the 

parcel that is used to excite those gravity waves at the equilibrium level. 
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The mean value theorem is used to integrate the expression 

JdwidkDd$ = yAWiAkhA$ . (4.3) 

? is a mean value of the energy density function, Ami is the frequency 

interval and A % is the horizontal wavenumber interval. Since the 

energy density function J is integrated over all horizontal angles in 

wavenumber space, A$ equals HIT. The next step is to calculate AkD. 

'and Awi with the help of Figures 4 and 6. 

The wavenumber at which the energy density function is a maximum 

(the peak of the graph in Figure 6b) is calculated from Equation (4.1) 

to be kh = nr/D. In terms of horizontal wavelength (h = 2s/kD), the 

wavelength at maximum J is equal to 2D. Assuming the diameter of the 

element at the equilibrium level is one kilometer, the wavelength for 

maximum J is two kilometers. Combining this fact with the information 

gathered from Figure 4 that wavelengths less than twelve kilometers do 

not reach the level of heating and noting that wavelength increases 

toward the origin in Figure 6b, it can be seen that the range of wave- 

lengths contributing the energy to the heating, A$, will be found to 

the left of the peak and that twelve kilometers is the right edge (or 

short-wavelength side) of the range. 

The chart in Figure 4 shows that the long-wavelength side of the 

wavelength range is not easily defined. All the longer wavelengths com- 

bined with the range of frequencies that can be considered reach the 

level of heating, although Figure 6b shows that little energy is 
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associated with the very long wavelengths. There are two reasons for 

no cut-off. First, the larger the wavelength, the smaller the wave- 

number and therefore the Doppler-shifted frequency (WkIJ) will never 

be zero (with the range of frequencies considered here). Thus, a 

critical level will never be reached. Also, a small wavenumber means 

that even with the strong easterly winds of the stratosphere, the 

Doppler-shifted frequency, wi, will always be less than the Brunt- 

V&aZls frequency and the wave group will not be reflected. 

Since no cut-off on the small-wavenumber side of Figure 6b is 

indicated from ray-tracing theory, the wavenumber interval is estimated 

to range from the clearly defined edge at the wavenumber associated 

with a wavelength of 12 kilometers all the way down to $he origin 

(wavenumber equal to zero). Therefore, -1 Ak8 is approximately 0.5 km . 

The frequency interval, Am i, can be estimated from Figure'4 by 

looking at the area on the figure associated with the most energy for 

the wavelength range and assuming the frequency range there. This 

-1 range taken at wavelength equal to 12 kilometers is 0.0013 set . 

The fractional part of the energy density associated with the 

range of gravity waves that reach the mesosphere is found by calculating 

the right side of Equation (4.3) using the values for Awi and AkH just 

estimated. The fraction is 0.0021. If the total energy associated 

with the rising parcel calculated in Chapter II from the temperature 

sounding of August 28 is multiplied by this fraction, the result is 

the amount of energy associated with the range of gravity waves that 

reach the level of heating. The assumptions that this energy is all 

converted into kinetic energy and all the kinetic energy is associated 

with a vertical velocity are made. Therefore, 
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= 1 w2 
KE 2 (4.4) 

where KE represents the fractional kinetic energy per unit mass 

(0.7Jkg-'). From Equation (4.4), a vertical velocity of 1.2 ms -' is 

calculated. 

The kinetic energy associated with a vertical velocity of 1.2 ms -1 

represents an estimate of the energy initially contained by those raves 

calculated to reach the mesosphere by ray-tracing theory. By using this 

value as the impulse that generates the internal gravity waves in a 

model, the energy attenuation by reflection and critical level inter- 

action of waves on their way to the mesosphere will be accounted for. 

Therefore the calculated heating will be representative of the actual 

energy involved. 
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CHAPTERV. THE MODEL OF GRAVITY WAVE STRUCTGRE 

The equations used to find the detailed gravity wave structure 

are taken from.Bretherton (1966). They are derived assuming a com- 

pressible atmosphere, but the equations describing the propagation of 

wave groups derived previously for an incompressible atmosphere may be 

used in conjunction with them as long as the WEB approximation is 

valid. Also, the Brunt-I&i&% frequency is now expressed as a function 

of the change of potential temperature with height. 

(5.1) 

The linearized equations corresponding to such an atmosphere are 

reproduced from Bretherton (1966). 

D 
Dt u' +uzw’ +Ip ’ = 0 

P x 

D w’ 
Dt 

+Bp’+l 
P cP,' = 0 

= N2w' 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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x or z used as a subscript denotes partial differentiation with respect 

to that variable. k stands for the operator k+lJ& and y = c /c 
P v' 

In these equations, p is a local value of the background density 

and is a function of height. It is the exponential variation of p that 

allows the amplitude of the waves to grow with height as a result of 

the conservation of energy. Bretherton rescales the equations to 

account for this effect by naming a reference density p. He defines 

new variables in this way: 

(u’, w’) = (P/P) - -l/2 (G,ij) (5.6) 

p’ = (P/W2 6 (5.7) 

1 , -- 
p - yp = (p/p> ‘- 5 . (5.8) 

Ew=tions (5.2) to (5.5) become 

&;+up+$ =o 
P x 

11D - --- -Dt:+Ux+ (& 
c2 P 

+$ii = 0 

&” -N2G=0 . 
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The equations used to find the detailed gravity wave structure 

are taken from Bretherton (1966). They are derived assuming a com- 

pressible atmosphere, but the equations describing the propagation of 

wave groups derived previously for an incompressible atmosphere may be 

used in conjunction with them as long as the WKB approximation is 

valid. Also, the Brunt-V&'alZ frequency is now expressed as a function 

of the change of potential temperature with height. 

(5.1) 

The linearized equations corresponding to such an atmosphere are 

reproduced from Bretherton (1966). 

D -u’ +uzw* +L Dt p Px' = 0 

1D 
PDtP’+p 2 ~pw'+uv-w'=O 

X z 

LD ypDtP’ - ’ = N2w1 

(5.2) 

(5.3) 

(5.4) 
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Pv 

In these equations, p is a local value of the background density 

and is a function of height. It is the exponential variation of p that 

allows the amplitude of the waves to grow with height as a result of 

the conservation of energy. Bretherton rescales the equations to 

account for this effect by naming a reference density p. He defines 

new variables in this way: 
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Here, c is the speed of sound equal to yp/p and H is a measure of the 

scale height such that: 

(5.13) 

At this point, c is allowed to approach infinity as in an incompress- 

ible atmosphere with the sole effect being the elimination of acoustic 

wave solutions. This leaves the continuity equation (Eq. 5.11) in the 

form 

ux+&-$i=o . (5.14) 

As a result of eliminating ii, i;, and 5 among Equations (5.9), 

(5.10), (5.12) and (5.14), the follotiing equation is found: 

'+ Gzz) + N2i& = k [(Ues - $ Ue)ijx] 

(1 + HZ)%1 . 
(5.15) 

The first term on the right-hand side comes from the approximation 

Bretherton makes that Gxs = - 6x/H. 

By assuming a wave form in the horizontal direction and time with 

a real wavenumber and frequency, the vertical structure of the wave may 

be found. Therefore, 

w = G(z) exp[i(kx - wt)] 

31 



and the equation becomes: 

k(U k2N2 ZZ 

2+ (w 

- + uz> 

(w - ku) 
- ku) 

(5.16) 

- 2 (1 + Hz> = 0 . 1 
J 

This equation is of the form 

G + f(z)G = 0 (5.17) 
ZZ 

where f(z) refers to the terms within the brackets and is a function of 

height. 

Although this equation resembles a simple wave equqtion, the 

function of height f(z) prevents it from being solved analytically. 

However, a numerical technique described by Chapman and Lindzen (1970) 

and originally discussed by Bruce, Peaceman, Rachford and Rice (1953) 

may be used. This method uses finite difference approximations for 

the derivatives and incorporates boundary conditions for the top and 

bottom of the model. The bottom boundary condition is a vertical 

velocity of 1.2 ms -1 at a level of ten kilometers. Ten kilometers is 

the approximate height of the equilibrium level for a penetrative 

element on August 28, 1976. A radiation condition is used as the upper 

boundary condition. It assumes that there are no energy sources at 

z = 00. 

The model's domain extends from 10 km to 80 km and the region is 

divided into lOO-meter-thick layers. This fine resolution is necessary 
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for numerical reasons (see Chapman and Lindzen, 1970). All the data 

needed to solve the equation (winds, temperature, scale height, etc.) 

are calculated or taken directly from the rocket measurements. Linear 

interpolation is used to find values between measurement levels. 

The upper level winds are a smoothed profile from wind measurements over 

several days. See Figure 7. 

The equation is solved with a predetermined frequency and horizontal 

wavenumber. The values for w and k are only those combinations found 

to describe wave groups that reach the level of heating. 

The resulting values of G are multiplied by the factor in 

.Equation (5.6) to put back the density effect. Values of w', the actual 

vertical velocity perturbations resulting from the propagation of 

internal gravity waves of some frequency w and wavenumber k, are then 

obtained. A plot of the amplitude of w' (since w' is complex) is 

shown in Figure 8. It reveals the great effect decreasing density with 

height has on the structure of the waves. 

The horizontal velocity perturbation u' can now be calculated 

using the continuity equation (Eq. 5.14), since the vertical variation 

of w' and thus G is now known. A wave form is assumed for "u in x and 

t, i.e., k and w are made real, so that 

ii = U(z) exp[i(kx - wt)] 

and Equation (5.14) becomes 
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AUGUST 28, 1978 

EAST- WEST WIND 
PROFILE 
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EAST (-1 WEST (+I 

WIND SPEED (MS-‘) 

Figure 7. Smoothed east-west wind profile for August 28, 1976 at 

Wallops Island, Va. 
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Solving this equation for u and multiplying the result by the factor 

in Equation (5.61, the horizontal perturbation velocities corresponding 

to the internal gravity waves are obtained. A plot of the amplitude 

of u' is shown in Figure 9 in which the density effect on wave 

amplitudes is also apparent. 
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AUGUST 28, 1976 

HORIZONTAL WAVELENGTH Xx = 18KM 

PERIOD T = 2700~0~ = 45.0 KM 

3 I 
50 too 150 200 250 

AMPLITUDE OF VERTICAL PERTURBATION VELOCITY (M S-‘1 

Figure 8. Amplitude of vertical perturbation velocity w' as a 

function of height. 
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Figure 9. Amplitude of horizontal perturbation velocity u' as a 

function of height. 
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CHAPTER VI. CALCULATION OF HRATING RATES 

The gravity wave solutions found in Chapter V were obtained 

without any friction. The rate at which friction would dissipate 

energy in those solutions is now calculated and it is assumed that 

this energy heats the background atmosphere. 

Gravity waves have been shown to have the potential to produce 

large amounts of heating. Hines (1965) has studied this effect at 

heights above the mesopause (80 km). He suggests that heating by 

gravity waves may be responsible for the rapid rise of temperature 

with height that occurs in the E-region (loo-120 km). Whitaker (1963) 

has suggested that gravity waves continuously propagating upwards 

from the photosphere of the sun are responsible for maintaining the 

high temperature of the solar corona. 

In this case, an estimate of just how much of the kinetic energy 

of these perturbations is destroyed by frictional dissipation is found 

by assuming that the friction term may be represented by means of an 

eddy viscosity coefficient K. K is a function of height. Cunnold, 

Alyea, Phillips and Prinn (1975) developed the profile of K for the 

stratosphere and mesosphere seen in Figure 10 which will be used here. 

In this case, the wind varies only in the vertical and the viscous 

dissipation terms can be represented this way: 
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Figure 10. Eddy viscosity coefficient K as a function of height. 
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In order to determine the rate of destruction of kinetic energy 

(ICE) by these terms, they are multiplied by u' and w' respectively 

and added. 

,2 
d%-- 

,2 

d + d(KE) -+-=-=u? 
dt dt dt g (+I 

(6.1) 

Next the thermodynamic equation may be employed: 

iLc dT+p& 
dt v dt dt 

cVs 
a constant, is the specific heat at constant volume and CL is the 

specific volume. The kinetic energy destruction rate is set equal to 

the heat added per unit time, dq/dt, since it is assumed that all the 

kinetic energy due to the velocity perturbations caused by gravity 

waves is dissipated as heat. 

In order to obtain a heating rate from this equation, the assump- 

tion must be made that all the heat energy per unit time, dq/dt, goes 

into heating the local medium as represented by the term cvdT/dt and 

none into expanding the medium as represented by the term pdclfdt, since 

it is difficult to estimate the amount of heat used in expansion. 

Therefore, it must be remembered that the heating rates obtained this 

way (in the form degrees K per day) will be the upper limit of the 

actual heating possible. 
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Some results obtained by solving 

dT 1% 
.t=<dt (6.3) 

are shown in Figures 11, 12 and 13. 

All the procedures performed on the data of August 28 are now 

used with the data of September 2. Convective activity occurred on 

that date as a result of a cold front moving through the area. 

When raypaths are calculated for wave groups in the atmosphere 

of September 2, some changes are necessary in the low level wind 

profile. The sounding for that day at 8 AM local time recorded 

westerly winds on the order of 30 m/set at the levels where the waves 

would be initiated by the penetrative convection. These strong 

positive winds produce critical levels (w - kU = 0) for a large range 

of frequencies and wavenumbers, thus effectively putting a lid on the 

propagation of most of the wave energy. 

Since a sounding only reflects the value of the wind speed at one 

instant and at one point in space and since penetrative convection was 

going on all around the area before and after the time of the sounding, 

it is not unreasonable to assume that the wind can have different 

values at other times. Therefore, the wind values used in computation 

of the raypaths have been changed to smaller positive values (% 5 ms -1 ) 

to allow more of the wave groups to reach the mesosphere. 

Some heating rates calculated for September 2 may be seen in 

Figures 14, 15 and 16. 
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HORIZONTAL WAVELENGTH = ISKM 
PERIOD = 2700sec. = 45.0 MIN. 
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Figure 11. Heating rates as a function of height, August 28, 1976. 
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Figure 12. Heating rates as a function of height, August 28, 1976. 
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Figure 13. Heating rates as a function of height, August 28, 1976. 
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Figure 14. Heating rates as a function of height, September 2, 1976. 
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Figure 15. Heating rates as a function of height, September 2, 1976. 
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Figure 16. Heating rates as a function of height, September 2, 1976. 
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CHAPTER VII. CONCLUSIONS 

The purpose of this thesis was to determine whether heating 

produced by gravity waves at an altitude of 60-70 kilometers could 

be responsible for the rapid heating observed in rocket measurements. 

The results seem to indicate that gravity waves are the probable 

mechanism producing that heating, despite all the assumptions and 

approximations made. 

A review of the assumptions is presented here. 

1. The assumptions of the parcel method (listed in Chapter II) 

2. The assumption that all the parcel's kinetic energy becomes 

associated with the parcel's vertical velocity at the EL 

3. The assumptions associated with ray-tracing theory 

a. the background atmosphere is 
incompressible 
isothermal 
isentropic 
hydrostatic 
non-rotating 

b. waves and atmosphere must obey the WRB approximation, 
. I.e., variables are slowly varying over a wavelength 

4. The assumptions associated with the set of equations used to 

find the vertical gravity wave structure in Chapter V 

a. again, the WKB approximation 
b. nonlinear terms are small and may be ignored 
C. a wave form for G and ;i with real wavenumber and frequency 
d. compressible and non-rotating atmosphere 
e. no friction 

5. The assumption that the amount of frictional dissipation is 

calculated using waves that traveled to mesospheric heights with 

no friction 

6. The assumption that the friction term may be estimated by 

means of an eddy viscosity coefficient 
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7. The assumption that all the energy dissipated by friction 

goes into heating the local medium 

From this list of assumptions, the limitations of this particular 

approach of calculating the heating rates become readily apparent. 

The large amplitudes of u' and w' evident particularly above 70 

kilometers in Figures 8 and 9 make it unreasonable to assume linear 

solutions as in this model. Therefore, rates obtained above 70 kilo- 

meters are not considered valid. Even below 70 kilometers the 

amplitudes in some cases are large enough to demand that nonlinear terms 

be accounted for. The large amplitudes and the complications intro- 

duced by the nonlinearities may be reduced if a friction term is 

included in the equations of motion used to determine the detailed 

structure of the gravity waves. This was not done in this study 

because of the great difficulty of solving such a set of equations. 

Most of these assumptions (particularly the last three) will lead 

to overestimation of the heating rates. Therefore, large rates will 

be expected but if some correction factor could be applied to the rates 

accounting for all the overestimations, heating similar to that ob- 

served would very likely be the result. The large rates shown in the 

figures then tend to substantiate the claim that the heating is indeed 

a product of gravity wave interaction with the atmosphere. 

The waves also produce cooling in certain regions. This is easily 

explained. Dissipation by friction is a process in which perturbations 

in a system become smoothed and flattened out. This is done not only 

by depositing energy in regions (heating) but also by removing energy 

from other regions (cooling). Note that even with cooling there is al- 

ways net heating in the 60-70 kilometer range. 
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Another interesting feature in the plots of the heating,rates is 

revealed through the shape of the plots and not the actual values. In 

all the plots, the calculated heating begins to take on significant 

values at the level at which the heating was actually observed. It 

seems as if heating by gravity waves only takes on significance above 

approximately 60 kilometers which may be why the heating is only 

noticeable above that level. 

If gravity waves generated by convection in thunderstorms do 

produce heating of the magnitude observed consistently (other processes 

in the atmosphere may mask the effect at times), then in regions of the 

earth where thunderstorms and intense convection occur frequently, such 

as the tropics, the mesosphere may have slightly higher temperatures. 

This remains to be determined. 

This study has produced no evidence that gravity waves are not the 

mechanism responsible for the observed heating. Any mechanism capable 

of coupling two regions of the atmosphere is potentially important so 

it is recommended that now a more detailed study should be made involving 

fewer simplifying assumptions and using equations for the gravity wave 

structure that include a friction term. 

Since intense convection occurs somewhere on the earth practically 

every minute of every day, upper atmospheric measurements made at 

other sites should eventually coincide with the passage of a squall 

line. Such occurrences should be watched for. Similar warmings in 

other locations will validate the Wallops Island data and provide more 

cases for study. A special program involving a series of rocket 

launchings before, during and after intense convective events would also 
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help to better determine the existence, extent and intensity of the 

heating. 

In Chapter III, the importance of the background wind in deter- 

mining the paths and range of gravity wave groups was discussed. 

Given that importance, a study of the variability of stratospheric 

and mesospheric winds would be of use. A look at the sensitivity of 

wave propagation to wind and temperature values would also be of 

interest. 

All of these suggestions will lead to a much-needed understanding 

of how events occurring in distant and seemingly distinct regions of 

the atmosphere are related. It is hoped that this understanding will 

serve as another step towards understanding the behavior of the atmo- 

sphere as a whole. 
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